Hyperpolarized 13C Metabolic MRI of the Human Heart

نویسندگان

  • Charles H. Cunningham
  • Justin Y.C. Lau
  • Albert P. Chen
  • Benjamin J. Geraghty
  • William J. Perks
  • Idan Roifman
  • Graham A. Wright
  • Kim A. Connelly
چکیده

RATIONALE Altered cardiac energetics is known to play an important role in the progression toward heart failure. A noninvasive method for imaging metabolic markers that could be used in longitudinal studies would be useful for understanding therapeutic approaches that target metabolism. OBJECTIVE To demonstrate the first hyperpolarized 13C metabolic magnetic resonance imaging of the human heart. METHODS AND RESULTS Four healthy subjects underwent conventional proton cardiac magnetic resonance imaging followed by 13C imaging and spectroscopic acquisition immediately after intravenous administration of a 0.1 mmol/kg dose of hyperpolarized [1-13C]pyruvate. All subjects tolerated the procedure well with no adverse effects reported ≤1 month post procedure. The [1-13C]pyruvate signal appeared within the chambers but not within the muscle. Imaging of the downstream metabolites showed 13C-bicarbonate signal mainly confined to the left ventricular myocardium, whereas the [1-13C]lactate signal appeared both within the chambers and in the myocardium. The mean 13C image signal:noise ratio was 115 for [1-13C]pyruvate, 56 for 13C-bicarbonate, and 53 for [1-13C]lactate. CONCLUSIONS These results represent the first 13C images of the human heart. The appearance of 13C-bicarbonate signal after administration of hyperpolarized [1-13C]pyruvate was readily detected in this healthy cohort (n=4). This shows that assessment of pyruvate metabolism in vivo in humans is feasible using current technology. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov. Unique identifier: NCT02648009.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessing ischemic myocardial metabolism in vivo with hyperpolarized 13C: relating the metabolic perturbation to the area at risk

Background The high metabolic activity of the heart makes it particularly suited to the use of hyperpolarized (HP) 13C methods to non-invasively detect and characterize metabolic changes that occur during ischemia/reperfusion (I/R). Energy metabolism in ischemic rat hearts has been previously interrogated with HP 13C-labelled pyruvate ex vivo, and its hyperpolarized metabolites have been imaged...

متن کامل

3D hyperpolarized C-13 EPI with calibrationless parallel imaging.

With the translation of metabolic MRI with hyperpolarized 13C agents into the clinic, imaging approaches will require large volumetric FOVs to support clinical applications. Parallel imaging techniques will be crucial to increasing volumetric scan coverage while minimizing RF requirements and temporal resolution. Calibrationless parallel imaging approaches are well-suited for this application b...

متن کامل

Hyperpolarized 13C magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the failing heart

AIMS Impaired energy metabolism has been implicated in the pathogenesis of heart failure. Hyperpolarized (13)C magnetic resonance (MR), in which (13)C-labelled metabolites are followed using MR imaging (MRI) or spectroscopy (MRS), has enabled non-invasive assessment of pyruvate metabolism. We investigated the hypothesis that if we serially examined a model of heart failure using non-invasive hy...

متن کامل

Thermal annihilation of photo-induced radicals following dynamic nuclear polarization to produce transportable frozen hyperpolarized 13C-substrates

Hyperpolarization via dynamic nuclear polarization (DNP) is pivotal for boosting magnetic resonance imaging (MRI) sensitivity and dissolution DNP can be used to perform in vivo real-time 13C MRI. The type of applications is however limited by the relatively fast decay time of the hyperpolarized spin state together with the constraint of having to polarize the 13C spins in a dedicated apparatus ...

متن کامل

Potential Clinical Roles for Metabolic Imaging with Hyperpolarized [1-13C]Pyruvate

Clinical oncology relies increasingly on biomedical imaging, with anatomical imaging, especially using CT and 1H-MRI, forming the mainstay of patient assessment, from diagnosis to treatment monitoring. However, the need for further improvements in specificity and sensitivity, coupled with imaging techniques that are reaching their limit of clinically attainable spatial resolution, has resulted ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2016